

When light passes through a medium it can lose some of its intensity. Scientists call this extinction. Depending on what properties they want to highlight in a calculation or a measurement, different ways of expressing extinction by a medium have arisen.

Opacity - Symbol
$$\tau$$
 : $I = I_0 e^{-\tau}$

Decibels - Symbol D :
$$I = I_0 \cdot 10^{-D/10}$$

Extinction Coefficient - Symbol C :
$$I = I_0 e^{-Cx}$$

Problem 1 - If $e = 10^{0.434}$, and $10 = e^{2.3}$ write all three equations A) in base-10 B) in base-e.

Problem 2 – In base-10, what is the relationship between τ , D and C?

Problem 3 – In base-e, what is the relationship between τ , D and C?

Problem 4 - The SAGE III instrument measures a 1 Decibel (1 dB) drop in the sun's brightness along a path through the atmosphere of x=2000 km. What is the optical depth and extinction coefficient for this region of the atmosphere?

Problem 1 - If $e = 10^{0.434}$ and $10 = e^{2.3}$ write all three equations A) in base-10 B) in base-e.

A)
$$I = I_0 e^{-\tau}$$
 $I = I0 (10^{0.434})^{\tau}$ so $I = I_0 10^{-0.434\tau}$

so
$$I = I_0 10^{-0.434\tau}$$

$$I = I_0 \cdot 10^{-D/10}$$
 unchanged so $I = I_0 \cdot 10^{-D/10}$

$$I = I_0 e^{-Cx}$$
 $I = I_0 (10^{0.434})^{(-Cx)}$ so $I = I_0 10^{-0.434Cx}$

so
$$I = I_0 10^{-0.434Cx}$$

B)
$$\mathbf{I} = \mathbf{I_0} \mathbf{e}^{-\tau}$$
 unchanged

$$I = I_0 (e^{2.3})^{-D/10}$$
 so $I = I_0 e^{-0.23D}$

$$I = I_0 e^{-Cx}$$

 $I = I_0 e^{-Cx}$ unchanged

Problem 2 – In base-10, what is the relationship between τ , D and C?

Just set the exponential factors equal to each other in Problem 1 A: Answer:

$$-0.434\tau = -D/10 = -0.434Cx$$
 so after simplifying we get $\tau = 0.23D = Cx$

Problem 3 – In base-e, what is the relationship between τ , D and C?

Answer: Set the exponential factors equal to each other in Problem 1 B: $\tau = 0.23D = Cx$

Problem 4 - The SAGE III instrument measures a 1 Decibel (1 dB) drop in the sun's brightness along a path through the atmosphere of x=2000 km. What is the optical depth and extinction coefficient for this region of the atmosphere?

Answer: For 1 dB, and from Problem 2 (or 3!) we have

$$\tau = 0.23 \, D \, so$$

$$\tau = 0.23 \times 1 \text{ dB}$$

 $\tau = 0.23$.

For 1 dB and for x = 2000 km, we have

0.23 dB = Cx and so

0.23 = 2000C and so

 $C = 0.000115 \text{ km}^{-1}$